Real Analysis GCE	Name:
v	

August, 2018

Exercise 1:

Let X and Y be two metric spaces and f a mapping from X to Y.

- (i). Show that f is continuous if and only if for every subset A of X, $f(\overline{A}) \subset \overline{f(A)}$.
- (ii). Prove or disprove: assume that f is injective. Then f is continuous if and only if for every subset A of X, $f(\overline{A}) = \overline{f(A)}$.
- (iii). Prove or disprove: assume that X is compact. Then f is continuous if and only if for every subset A of X, $f(\overline{A}) = \overline{f(A)}$.

Exercise 2: Let $K \subset \mathbb{R}$ have finite measure and let $f \in L^{\infty}(\mathbb{R})$. Show that the function F defined by

$$F(x) := \int_{K} f(x+t)dt$$

is uniformly continuous on \mathbb{R} .

Exercise 3:

Let $\{f_n\}$ be a sequence in $L^1(\mathbb{R})$ such that $f_n \to 0$ a.e.

(i) Show that if $\{f_{2n}\}$ is increasing and $\{f_{2n+1}\}$ is decreasing, then

$$\int f_n \to 0.$$

(ii) Prove or disprove: if $\{f_{kn}\}$ is decreasing for every prime number k, then

$$\int f_n \to 0.$$

(Note on notation: e.g., if k=2, then $\{f_{kn}\}=\{f_{2n}\}$. Note also that 1 is not prime).